A Class of Accelerated Conjugate Direction Methods for Linearly Constrained Minimization Problems
نویسندگان
چکیده
A class of algorithms are described for the minimization of a function of n variables subject to linear inequality constraints. Under weak conditions convergence to a stationary point is demonstrated. The method uses a mixture of conjugate direction constructing and accelerating steps. Any mixture, for example alternation, may be used provided that the subsequence of conjugate direction constructing steps is infinite. The mixture of steps may be specified so that under appropriate assumptions the rate of convergence of the method is two-step superlinear or (n p + 1)step cubic where p is the number of constraints active at a stationary point. The accelerating step is always superlinearly convergent. A condition is given under which the alternating policy is every step superlinear. Computational results are given for several test problems.
منابع مشابه
Inexact accelerated augmented Lagrangian methods
The augmented Lagrangian method is a popular method for solving linearly constrained convex minimization problem and has been used many applications. In recently, the accelerated version of augmented Lagrangian method was developed. The augmented Lagrangian method has the subproblem and dose not have the closed form solution in general. In this talk, we propose the inexact version of accelerate...
متن کاملPattern Search Methods for Linearly Constrained Minimization
We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a KarushKuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative of th...
متن کاملLinearized Alternating Direction Method of Multipliers for Constrained Nonconvex Regularized Optimization
In this paper, we consider a wide class of constrained nonconvex regularized minimization problems, where the constraints are linearly constraints. It was reported in the literature that nonconvex regularization usually yields a solution with more desirable sparse structural properties beyond convex ones. However, it is not easy to obtain the proximal mapping associated with nonconvex regulariz...
متن کاملAccelerated Bregman Method for Linearly Constrained ℓ1-ℓ2 Minimization
We consider the linearly constrained `1-`2 minimization and propose the accelerated Bregman method for solving this minimization problem. The proposed method is based on the extrapolation technique, which is used in accelerated proximal gradient methods studied by Nesterov, Nemirovski, and others, and the equivalence between the Bregman method and the augmented Lagrangian method. O( 1 k2 ) conv...
متن کاملCustomized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach
This paper takes a uniform look at the customized applications of proximal point algorithm (PPA) to two classes of problems: the linearly constrained convex minimization problem with a generic or separable objective function and a saddle-point problem. We model these two classes of problems uniformly by a mixed variational inequality, and show how PPA with customized proximal parameters can yie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010